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JWPSR Research Program 
3 Pages on Homogenous Isotropic Turbulence 

 

This is a 3-page outline of our analysis of Homogeneous Isotropic Turbulence (HIT) using the Wiener Machin-

ery – Integral Polynomial Functionals based on the Wiener process.  All random turbulent velocities and pressures 

can be exactly expressed with these functionals, which have deterministic kernels.  The equations of motion then 

become deterministic equations in real functions of real variables.  In other words, the randomness of turbulence 

is transformed out of the equations!  See “JWPSR3PagesOnWienerMachinery.doc” for further details. 

 

HIT is the Grand Exemplar of turbulence.  It is homogeneous and ergodic on three space dimensions and decay-

ing in time1.  This flow has little practical significance, but great theoretical importance because of the work of 

Batchelor (et al.) on the statistical theory and Kolmogorov (et al.) on the energy cascade.  There are also some 

very important computer results using DNS methods.  Homogeneous means that the statistics are independent of 

position in 3-space; Ergodic means that space averages are equal to ensemble averages; Isotropic means the sta-

tistics are independent of rotation of the coordinate system.  Many authors also take the statistics to be independ-

ent of reflections of the coordinate system, but neither the physics nor the mathematics requires this – nor do we. 

 

The standard equations of motion for an incompressible Newtonian fluid (in physical units) are: 
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Viscosity “ν” is the only constitutive parameter, so these physical equations are no more complicated than the 

normalized equations.  The advantage is that we do not have a priori to declare scales of L, T, and V. 

 

Invariant Correlation Tensors:  By Robertson’s Theory of Invariants, the 2-point 2-velocity (2P2V) correlation 

tensor and its (proper) Fourier transform must have the form2: 
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The Rk(..) and k(..) are real functions of a positive real parameter.  For invariance to reflection, set Rr(..)=0.  For 

an incompressible fluid, the divergence of the velocity must be zero, which requires 
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A similar analysis of the 2-point 3-velocity (2P3V) correlation tensor and its transform yields: 
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Analysis by HPF:  Our first analysis uses Wiener’s Homogeneous Polynomial Functionals (HPF’s) with a Wie-

ner process defined on 3-space.  The appropriate Wiener Integral form is: 
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1 We shall say “stationary” as synonymous with “homogeneous” in this context. 
2 This notation is traditional even though it does lead to some confusion, especially with “R”. 
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Here the Wiener Process is defined in 3-space and the integral is taken over all space.  We then use a vector Wie-

ner process r
β
(x

k
,α) with a span of 3 for the HPF expansion of the velocities to produce: 
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This expansion is focused on the final stages of decay where the dissipation term dominates the inertial term.  We 

have no a priori proof that this expansion even converges, but we will have a posteriori credible results. 

 

Most important:  the velocity kernels are square integrable over all space, so they have proper Fourier Transforms. 

 

Application of the Equations of Motion:  The equations of motion yield a set of coupled equations in the veloci-

ty and pressure kernels that can be solved in sequence.  The first two equations – in spectral form – are: 
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Solution to the 1
st
 Order Equation:  The 1

st
 order solution is: 
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The first order pressure is identically zero and the velocity spectrum has exponential time decay. 

 

For the present, we presume that the 1
st
 and 2

nd
 (and higher) order solutions contribute independently to the 2P2V 

correlation tensor.  Then: 
 

 
k2 2
11 1

1

t tij k i k j k ij k ijk

2 1 1 1 1 1 1 a 1 b 1( , t) A ( ) e A ( ) e ( ) ( , t) ( , t)
  


               (9) 

 

A very general form of the U’s (including the alternator term) is: 
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Then the resulting first term contribution to the 2P2V correlation tensor is: 
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The Energy Density Function is
3
: 
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3 These results parallel Batchelor, q.v. and are derived by using Isotropy and spherical coordinates.   
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The final stage of energy decay then depends on the structure of Фa(κ) around the origin.  Batchelor expands 

Ф
ij
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k
) as an analytic function of κ

i
 around the origin and concludes that ED~t

-5/2
.  Saffman expands Фa(κ) in a 

power series in κ around the origin and concludes that ED~t
-3/2

.  Our results confirm both conclusions consistent 

with the assumptions made. 

 
However, Фa(κ) is a real function of a positive real variable.  Nothing in the physics or math requires Фa(κ) to be 

regular, let alone analytic around the origin.  Some examples follow: 
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Many other spectrum forms and decay laws are possible, entirely dependent on initial conditions.  One should be 

very guarded about drawing conclusions from the energy spectrum alone without detailed knowledge of the initial 

conditions. 

 
Solution to the 2

nd
 Order Equation:  There is both a Homogeneous Solution (no drives) and a Particular Solu-

tion (driven by the 1
st
 order terms).  The Homogeneous Solution leads to another set of HPF functionals of even 

order only – no Gaussian term!  This is interesting, but a separate topic. 

 

The 2
nd

 order particular solution has U2(..) kernels entirely determined by the U1(..) kernels.  Moreover,  

 the P2(..) pressure term is not zero!  Finally, the U2(..) contribution to the 2P2V correlation tensor Ф4(..) is com-

pletely determined by Ф2(..) and it will always decay faster than the Ф2(..) term in the final stages. 
 

Overall, the 2
nd

 and higher HPF terms do not seem to contribute much to this analysis of the final stages of decay.  

However, it may well be that the OPF analysis will better represent the inertial range, in which case higher order 

terms will be quite important. 

 

Further Results:  There are many other results to present, e.g. the effect of the alternator terms, and the structure 

of the 2P3V correlation tensor.  One interesting result comes from the MFD case.  Suppose the fluid is a good 

electrical conductor.  Suppose that an Isotropic field is well established, and then at time t0, a substantial Magnetic 

field is turned on.  The velocity field then becomes axisymmetric with the parallel velocities about double the 

perpendicular ones.  Suppose further that at time t1, the Magnetic field is turned off.  Question:  does the velocity 

field return to Isotropy? 

 

The answer is NO!  This is strong evidence that the “natural” final decay of turbulence is not necessarily iso-

tropic.  This casts doubt on this fundamental premise of many spectral arguments. 

 
Conclusions:  This is an analysis of Isotropic Turbulence with Wiener’s Homogeneous Polynomial Functionals 

(HPF’s).  We develop all the known theoretical results, and demonstrate many other solutions with differing de-

cay and separation laws.  We can even visualize the flow for a given instance of α – the sampling parameter. 

 

This is a first application of the Wiener Machinery to HIT.  We expect many more results with the application of 

OPF’s and/or Gaussian Transforms. 

 

Dr. John William Poduska, Sr. 
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