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JWPSR Research Program 
3 Pages on the Wiener Machinery 

 

This is a 3-page outline of the Wiener Machinery – Integral Polynomial Functionals based on the Wiener process, 

used in our studies of turbulence.  All random turbulent velocities and pressures can be exactly expressed with 

these functionals, which have deterministic kernels.  The equations of motion then become deterministic pde’s in 

real functions of real variables.  In other words, the randomness of turbulence is transformed out of the equations! 

 

For us, fluid turbulence is the presence of random velocities, pressures, etc.  At the most fundamental level (per 

Wiener) “A Random Physical Quantity (say a turbulent velocity) is a real function of space, time, and a real 

(sampling) parameter [0,1].”  Therefore, a velocity component is just u(x,y,z,t,α), whose average is: 
 

  
1

0
u(x, y,z, t, ) u(x, y,z, t) u(x, y,z, t, ) d     E  (1) 

 

So the parameter  selects a particular path from the sample space, and averages are simple integrals on  over 

the interval [0,1]. 
 

 That’s about it! 
 

It is not trivial to prove that such a construction exists, but in fact, this can be done for smooth random quantities 

– including all physical quantities in continuum physics.  This is the formalism chosen by Wiener1 and later used 

by Yaglom2 and Lumley3.  It is a simple representation of random quantities with all the helpful machinery of real 

analysis, especially Hilbert Spaces.  We do not have to deal with measure theory, sigma algebras, etc. 

 

Next, the Wiener Process r(t,α) is just Brownian Motion centered at the origin.  From this Wiener constructed: 
 

 p pf (t, ) F (t s)dr(s, )



    (2) 

 

This is the celebrated “Wiener Stochastic Convolution Integral”.  It is an ordinary Riemann-Stieltjes integral4, 

which exists because r(t,α) is continuous and Fp(..) is locally bounded in variation.  Note particularly that fp(t,α) 

is Gaussian, stationary and ergodic on t.  Moreover, the correlation function is: 
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So the Fp(..) are L
2
 and have proper Fourier Transforms.  Finally, the fp(t,α) have proper derivatives: 

 

 p p
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dt dt
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These are compelling properties for a Random Function definition – just what we need for studying turbulence. 

 

                                                 
1 See Wiener “Nonlinear Problems in Random Theory”. 

2 See Yaglom “Stationary Random Functions”, especially section 2.8. 

3 See Lumley “Stochastic Tools in Turbulence” especially section 1.6. 
4 Yaglom noted that this is a classic “separation of variables” technique. 
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Wiener defined two types of polynomials in these integrals, Homogeneous Polynomial Functionals (similar to a 

Taylor series) and Orthogonal Polynomial Functionals (similar to a Hermite Polynomial series).  (There are oth-

er useful functional expansions techniques, e.g. the Gaussian Transform.) 

 

Homogeneous Polynomial Functionals:  The n
th

 HPF term is (using Wiener’s notation): 
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The kernels Un(t1,
…

,tn) are symmetrical in the {tn} arguments.  Then the HPF expression of u(t,α) is: 
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These HPF’s work well for many flows (e.g. Homogeneous Isotropic Turbulence – HIT).  However, there are 

some convergence issues – analogous to a Taylor Series. 

 

Orthogonal Polynomial Functionals:  The OPF’s are a complete set of orthogonal (to integration on α) func-

tionals which Wiener derived from HPF’s by a Gram-Schmidt process.  The n
th

 OPF term is (using Wiener’s 

notation) Gn[Un(s1,s2,
…

,sn);α].  The Gn[
…

] are constructed from the corresponding HPF as follows: 
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In words, the n
th

 OPF term is constructed from a finite sum of HPF terms of order {n,n-2,
…

} with kernels con-

tracted from the original Un(
…

).   The process is straightforward but tedious.  (More details are in Wiener NPRT 

and Poduska-62.)  Then the OPF expansion of u(t,α) is: 
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These OPF’s are more complex and harder to use, but convergence is assured for any stationary flow with locally 

bounded energy.   

 

The Calculus of Random Functionals:  Wiener used this colorful term to describe the toolkit for manipulating 

his polynomial functionals.  Included are formulas for inversion, products, extension to multiple parameters, and 

much more.  Wiener also used the term “Random Theory”, and Yaglom coined the more descriptive term “Wie-

ner Machinery”.  We use these terms interchangeably. 

 

Extensions to Multiple Parameters:  So far we have considered u(t,α) – a scalar Random Function which is sta-

tionary and ergodic on a single parameter “t” (not necessarily time).  We want to express u
i
(x,y,z,t,α) in polyno-
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mial functionals so that the stationarity and ergodicity of the physical situation is captured.  For example, for HIT 

in free space, the flow is stationary (i.e. homogeneous) and ergodic on all three space dimensions and depends 

parametrically on t, so the appropriate Wiener Integral form is (c.f. (2)): 
 

 
p p 1 1 1 1 1 1
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Here the Wiener Process is defined in 3-space and the integral taken over the entire space. 

 

Many steps have been omitted here, and it is no trivial matter to show that this integral exists, but this develop-

ment can be made quite rigorous.  The result is that fp(x,y,z,t,α) is stationary and ergodic on {x,y,z} and depends 

parametrically on t.  Moreover, the HPF’s and OPF’s are defined exactly as before in the single parameter case.  

This is the basis for our study of HIT. 

 

For Plane Poiseuille Flow (PPF) the corresponding Wiener Integral form is: 
 

 p p 1 1 1 1 1 1
S

f (x, t, z, y, ) F (x x , t t , z z , y) dr(x , t , z , )       (10) 

 

In this case, fp(x,t,z,y,α) is stationary and ergodic on {x,t,z} and depends parametrically on y.  The HPF’s and 

OPF’s are developed analogously. 

 

Extensions to Vector Random Functions:  So far we have considered u(x,y,z,t,α) – a scalar Random Function 

which is stationary and ergodic on its parameters in a manner appropriate to the physical situation.  But in turbu-

lence we deal with vector velocities – so it is tempting to simply write u
i
(x,y,z,t,α) and then make vectors of the 

random functions and kernels.  Unfortunately, this is not sufficient.  The remedy5 is to define a vector Wiener 

Process with independent components from which the Wiener Integral is defined.  For HIT this is: 
 

 
i i k k k

p p 1 1
S

f (x, y,z, t, ) F (x x , t) dr (x , )      (11) 

 

The span of the summation on β may be more or less than the number of physical dimensions.  This is a complex 

issue and relates to the number of degrees of freedom in the flow.  For HIT we typically use a span of 3 for sym-

metry, even though only 2 is required for incompressible flow. 

 

The resolution to this nettlesome matter comes from proving the completeness of the Polynomial Functionals – a 

subject covered in another short paper. 

 

Summary:  This is a short 3-page outline of the Weiner Machinery as we apply it to turbulent flows.  Many de-

tails have been omitted, but the essence of the argument is this: the Wiener Machinery is a valuable tool uniquely 

able to describe turbulent fields analytically. 

 

Whenever the polynomial kernels have been determined for a given flow, then all velocity profiles, drag coeffi-

cients, energy terms, spectra, etc. can be uniquely calculated.  Moreover, precise flow visualizations can be con-

structed. 

 

Dr. John William Poduska, Sr. 

jwpsr@mail.com 

(1026 words) 

 

                                                 
5 Waleffe brought this to our attention, and it is examined in great detail in our Chapt04.doc 
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