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A Short Paper On Theoretical Turbulence 
 

 

1.  The Task to Be Accomplished 

 Turbulence — the last unsolved problem of classical physics.  This Short Paper follows a 

narrow path of: 
 

1. Specify the Problem – Turbulent Shear Flows 

2. Select a Form of Solution – u
i
(x,y,z,t;) 

3. Explore the Representation of u
i
(x,y,z,t;) – Wiener Functionals and Quantile Functions 

4. Discuss a Galerkin-Optimized numerical approximation to u
i
(x,y,z,t;) 

5. Display some Tentative Results – Suggestive, but not Conclusive 

6. Brief Description of a Quantile Approach 

 

 There are no proofs here, only references to the literature. 

 

 Why all the bother?  We want to show that the equations of motion for random u
i
(x,y,z,t;) can 

be converted into equivalent equations in several non-random functions of the form (x,y,z,t).  In other 

words, transform the randomness out of the PDE’s!  Such equations – when solved – are solved once 

and for all.   

 

 

2.  Definition:  Problem and Form of Solution 

2.1.  The Problem – Turbulent Shear Flows 

 Consider a steady turbulent flow in a wide rectangular channel – Plane Poiseuille Flow – with 

random velocities u
i
(x,y,z,t;).  The velocities are stationary and ergodic on {x,z,t}, they have bounded 

local energy, they are C
k
 and have C

k
 distribution functions1.  Many experimental results have shown 

that the random part of these velocities is not entirely Gaussian (exemplified by “Skewness” and “Flat-

ness”), but very close to it. 

 

We adopt the usual assumptions: 
 

1. The Fluid is simple Newtonian 

2. The Navier-Stokes and Mass-Conservation PDE’s apply 

3. The Fluid is Incompressible 

4. The Viscosity is constant, independent of temperature 

5. We accept “Reynolds Averaging” and the RANS – aka Ergodic 

 

These assumptions are universally adopted by experimental, empirical, theoretical and numerical re-

searchers for incompressible steady flows. 

 

 

                                                 
1 C

k
 means that the function and its first k derivatives are continuous.  Some writers say “k-continuous” in place C

k
.
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2.2.  Form of Solution – u
i
(x,y,z,t,) 

 For us, fluid turbulence is the presence of random velocities, pressures, etc.  At the most fun-

damental level (per Wiener, Lumley, et al.):  
 

“A Random Physical Quantity (say a turbulent velocity) is a real function 

of real parameters space, time, and a real (sampling) parameter [0,1].” 
 

Therefore, a velocity component is just u(x,y,z,t;α), whose average is: 
 

  
1

0
u(x, y,z, t; ) u(x, y,z, t) u(x, y,z, t; ) d     E  (2.2.1) 

 

So, the parameter  selects a particular path from the sample space, and averages are simple integrals on 

 over the interval [0,1]2. 
 

 That’s about it! 

 

 It is not trivial to prove that this representation is valid, but in fact, this can be done for smooth 

random quantities – including all physical quantities in continuum physics.  This is the formalism initi-

ated by Steinhaus, developed by Wiener3 and later used by Yaglom4 and Lumley5.  It is a simple repre-

sentation of random quantities with all the helpful machinery of real analysis, especially Hilbert Spaces.  

We do not have to deal with measure theory, sigma algebras, etc. 

 

 Our entire research program is based on the proposition that the velocities in steady shear flows 

(and in fact in many other flows, e.g. HIT) are properly represented by: 
 

 ;i
u (x, y, z, t α)  (2.2.2) 

 

 Now we proceed to represent these Random Quantities by various expansion techniques includ-

ing Wiener Functionals and (later) Quantile Functions. 

 

 

3.  First Steps to a Proper Representation 

3.1.  Brownian Motion – The Wiener Process 

 Our Tools – the Wiener Machinery – are based on the Wiener Process (aka Brownian Motion): 
 

 r(t; )   (3.1.1) 
 

This is a Gaussian process with these properties: 
 

1. r(0;)=0 for all  

2. r(t;) is Continuous for all t and all  

3. r(t;) is not locally Bounded Variation 

4. r(t;) has Independent Identically Distributed Gaussian increments 
 

                                                 
2 The parlance “u(..) is indexed over [0,1]” is sometimes used. 

3 See Wiener “Nonlinear Problems in Random Theory”. 

4 See Yaglom “Stationary Random Functions”, especially section 2.8. 

5 See Lumley “Stochastic Tools in Turbulence” especially section 1.6. 
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Many more interesting properties are developed in the literature6, but the most important properties for 

us are: continuous, not bounded variation, and iid Gaussian increments. 

 

 

3.2.  The Wiener Stochastic Convolution Integral 

 Consider the Wiener Stochastic Convolution Integral7: 
 

 
b

s
a

f (t; ) F(t s)dr (s; )     (3.2.1) 

 

This is a standard Riemann-Stieltjes integral whose existence is assured8 because F(..) has bounded vari-

ation and r(..) is continuous.  The integral exists with infinite limits provided that F(..) decreases suffi-

ciently rapidly. 

 

 Then f(t;) is Gaussian and stationary on t.  Moreover, the Cross-Correlation of two such func-

tions is: 
 

  f (t; ) g(t ; ) F(t) G(t ) dt



         E  (3.2.2) 

 

Similarly, the Auto-Correlation and Mean-Square are: 
 

 
 

 

f (t; ) f (t ; ) F(t) F(t ) dt Auto-Correlation

f (t; ) f (t; ) F(t) F(t) dt : Mean-Square









         

     





E

E
 (3.2.3) 

 

Proof of these equations is tedious but straightforward9.   

 

 Some observations: 
 

1. f(t;) is Gaussian and stationary on t. 

2. There is a useful isometry between f(..) and F(..) 

3. f(t;) is square-integrable and stationary over infinite limits, hence f(t;) is Ergodic on t and , 

i.e. infinite averages over t are equal to ensemble averages defined as integrals on  over [0,1]. 

4. t-derivatives exist for smooth enough F(..), i.e.: 
 

 s

d d
f (t; ) F(t s) d r(s; )

dt dt





 
     

 
  (3.2.4) 

 

 Finally, every stationary, Gaussian random function with finite mean and variance is completely 

specified by its mean and auto-correlation function10, and any autocorrelation function can be generated 

with the appropriate kernel to the Wiener Integral.  This is very important. 

 

                                                 
6 The Wikipedia Article “Wiener Process” is quite good. 
7 Yaglom observed that this is a classic case of “separation of variables”. 
8 This is a standard result of sophomore level real analysis, but sometimes misstated in the literature. 
9 See Wiener, ibid 
10 See Yaglom “Stationary Random Functions”, especially section 1.3. 
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 We now have a tool for completely specifying a stationary Gaussian Random Function along 

with its derivative suitable for plugging into a differential equation.  The tasks remaining are to extend 

this description to: 
 

1. Non-Gaussian Random Functions 

2. Multiple parameters, i.e. (x,y,z,t) in place of just (t) 

3. Vector Values – u
i
(..) – and multiple degrees of freedom 

 

 

3.3.  Wiener Polynomial Functionals 

 Recall the Wiener Stochastic Convolution Integral: 
 

 su(t; ) U(t s)dr (s; )     (3.3.1) 

 

This is a complete representation for Gaussian random functions.  We can add a second, third and more 

non-Gaussian terms as follows: 
 

 

0 0

st

1 s

nd

2 1 2 s 1 s 2

rd

3

u U {u} Mean Value

U (t s) dr (s; ) 1  Term, Gaussian

u(t; ) U (t s , t s )dr (s ; )dr (s ; ) 2  Term non-Gaussian

U ( , , )dr(..)dr(..)dr(..) 3  Term non-Gaussian

etc.

 


 


     



 







E

 (3.3.2) 

 

These are Wiener’s Homogeneous Polynomial Functionals (aka HPF’s).  His (functional) notation is: 
 

 

 

k

k 0

k

k k 1 2 k n

n 1

k k 1 2 k

u(t; ) u (t; )

u (t; ) U (t s , t s , , t s ) dr(s ; )

U (s ,s , ,s );







  

      

 



 

H

 (3.3.3) 

 

Here Hk[Uk(..);] is the k
th

-order HPF11.  Note that the kernel Uk(..) may be taken as symmetrical in its 

k arguments.  Also note that the Hk[..;] are not mutually orthogonal.  Wiener used a Gram-Schmidt 

process to generate an orthogonal set of Orthogonal Polynomial Functionals (OPF’s) – the 

Gk[Uk(..);].  These will be quite useful, especially for steady shear flows. 

 

 We emphasize here that: 
 

1. Uk(..) is symmetrical in its k-arguments. 

2. Uk(..) is bounded-variation on all k-arguments. 

3. Uk(..) will have well defined derivatives. 

4. Uk(..) is square integrable over [-∞,+∞] on all k-arguments. 

5. Uk(..) can be represented by a sum of basis functions in its Hilbert Space. 

 

                                                 
11 Wiener used a semi-colon rather than a comma to separate the  parameter.  This is stylistic only – there is no mathemati-

cal significance. 
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 These Hk[Uk(..);] and Gk[Uk(..);] are the main tools used in our study of theoretical turbu-

lence.  There remain the tasks of extending these tools to: 
 

1. Multiple parameters – i.e. (x,y,z,t) in place of just (t) 

2. Vector Values and Multiple Degrees of freedom 

 

 In addition, we will explore the use of Quantile functions to reduce simplify the representation 

of velocities, u
i
(x,y,z,t;) and other random quantities. 

 

 

4.  Extension of the Wiener Functionals 

4.1.  Multiple Parameters 

 Recall the Wiener Stochastic Convolution Integral: 
 

 su(t; ) U(t s)dr (s; )     (4.1.1) 

 

It is complete for single-parameter Gaussian random functions.  The HPF’s and OPF’s extend this rep-

resentation to any square-integrable, stationary random function of a single parameter. 

 

 We now extend this integral to two parameters formally by the integral: 
 

 1 1 1 1u(x, y; ) U(x x , y y )dr(x , y ; )      (4.1.2) 

 

This integral is taken to be a surface integral, and dr(x,y;) is a surface element whose variance is 

d(x,y) – the area of the surface element.  This heuristic description can be made quite rigorous.12  

Moreover, three parameter integrals are defined as: 
 

 
1 1 1 1 1 1

1 1 1 1 1 1

u(x, y,z, t; ) U(x x , y y ,z z , t)dr(x , y ,z ; ) For HIT, t is free

u(x, t,z, y; ) U(x x , t t ,z z , y)dr(x , t ,z ; ) For PPF, y is free

     

     




 (4.1.3) 

 

This integral is taken to be a volume integral, and dr(x,y,z;) is a volume element whose variance is 

d(x,y,z) – the volume of the volume element.  The first example is stationary and ergodic on {x,y,z} 

and is good for Homogeneous Isotropic Turbulence (HIT) with “t” as a free parameter.  The second 

example is stationary and ergodic on {x,t,z} and is good for Plane Poiseuille Flow (PPF) with “y” as a 

free parameter. 

 

 These 2-parameter and 3-parameter integrals can be used as the basis Polynomial Functionals 

(both HPF and OPF) with no difficulty.  The Hk[Uk(..);] and Gk[Uk(..);] so formed are the main 

tools used in our study of theoretical turbulence.  There remain the tasks of extending these tools to: 
 

1. Vector Values and Multiple Degrees of freedom 

 

 

4.2.  Vector Values and Multiple Degrees of Freedom 

 Naively, we might construct a Vector Wiener integral as: 

                                                 
12 See Wiener and Poduska ScD Thesis ’62.  Also see RandomTheoryOfTurbulence 

http://www.randomtheoryofturbulence.com/
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i i

su (t; ) U (t s)dr (s; )     (4.2.1) 

 

But then, given full knowledge of all U
i
(..), all u

i
(..;α) can be determined uniquely from knowledge of 

only one – i.e. the u
i
(..;α) are completely mutually dependent.  This leads to the (somewhat murky) no-

tion of “degrees-of-freedom” (DOF) – i.e. how many entirely independent quantities are required to 

represent a given vector random function13.  This is difficult to answer. 

 

 However, for a given number of DOF, the appropriate form of the Wiener Integral is: 
 

 
i i

su (t; ) U (t s)dr (s; )      (4.2.2) 

 

The sum on  is over the number of DOF, and the dr

(s;) are mutually independent. 

 

 Some examples may help: 
 

1. For PPF, Mass-Conservation implies that given two velocities, the third is uniquely determined.  

Thus, the maximum number of DOF required is 2.  It is possible (but unknown) that the Navier-

Stokes equations further reduce the required number of DOF to 1. 

2. A larger number of DOF may be used for convenience with no harm. 

3. A similar analysis says that HIT requires only 2 DOF.  In this case, we know that reduction to 1 

DOF does not yield all solutions. 

4. For the MFD case of PPF, we may require 4 DOF to accommodate both the random velocity 

and B-field vectors. 

 

 The “degrees-of-freedom” issue adds considerable complexity to the Wiener Polynomial Func-

tional representation of random velocities – u
i
(x,y,z,t;) and other random quantities.  This is somewhat 

mitigated by the use of Symbolic Algebra software – we use Maple. 

 

 

4.3.  Summary:  Wiener Polynomial Functionals 

 We have presented above the Wiener Machinery appropriate for the study of certain turbulent 

flows, including HIT and PPF.  The tools are quite complex in detail, but there are computer tools to 

help the development.  Specifically: 
 

1. Polynomial Functionals, Hk[Uk(..);] and Gk[Uk(..);] which completely represent random tur-

bulent quantities, e.g. u
i
(x,y,z,t;) 

2. These Functionals are based on the Wiener Stochastic Convolution Integral, which has been ex-

tended to multiple parameters and vector-valued quantities with multiple degrees of freedom. 

 

 These Polynomial Functionals have many advantages, chief of which (for us) are: 
 

1. Space and Time Derivatives – essential for solving PDE’s – are simply expressed. 

2. The Kernels are smooth non-random functions.  Once determined, they are known forever. 

3. Specific flows can be generated (for a given ) and visualized.  This corresponds exactly to a 

DNS study of a flow. 

 

The task now is to apply these tools. 

                                                 
13 There is a bit more to the story. 
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5.  Galerkin-Optimized Representation of u
i
(x,y,z,t;) 

5.1.  The Basic Idea 

 The solution to turbulent PPF velocities (i.e. the random u
i
(x,y,z,t;)) lies in determining the 

kernels of the Gk[Uk(..);] (i.e. the non-random deterministic Uk(..)) via the equations of motion. 

 

 For our initial implementation, we choose to represent these kernels with truncated expansions 

and “optimize” the approximation with a Ritz-Galerkin technique14.  The process is complex, but can be 

broken down into simpler steps as follows: 
 

1. Set the velocities to the curl of a stream function, i.e. u
i
(x,y,z,t;)=curl(s

i
(x,y,z,t;)),  Thus, the 

Mass-Conservation equation is satisfied identically. 
 

2. Set the stream function to a finite truncated sum of OPF functionals with 1-DOF thus: 
 

i i j j

2
i i

k

k 0

i i

k k k 1 2 k

u (x, t,z, y; ) s (x, t,z, y; ) curl of stream function

s (x, t,z, y; ) s (x, t,z, y; ) truncate to three terms, 1-DOF

s (x, t,z, y; ) S (s ,s , ,s ); each term is an OPF





   

  

    



G

 

 

3. Expand the S
i
k(..) with Hermite Functions15 on {x,t,z} with coefficients as functions of y. 

 

4. Expand these y-coefficients in selected functions on y[-1,+1] with constant parameters. 
 

5. Insert into the Navier-Stokes to determine an Error Residual. 
 

6. Truncate this Error Residual to terms in the original stream function representation. 
 

7. Minimize some scalar norm of the Error Residual with regard to the free parameters. 

 

 We call this the GERM – Galerkin Error Residual Method.  This is a VERY complex process 

in detail, but in concept it is straightforward. 

 

 

5.2.  Developing the Model 

 There is much more to be said about selecting the form of these Kernel expansions: 
 

1. Symmetry conditions will greatly reduce the number of expansion parameters.  In particular, 

there are many {y,z} symmetries that are applied directly to the kernel. 
 

2. Wall conditions will shape the y-function formulation.  In particular, mid-channel behavior 

should be slowly varying while wall behavior should be sharply exponential. 
 

3. We can and do require the mean G0[U0(..);] equations to be satisfied identically. 

 

                                                 
14 There are of course many other techniques to try, including a Quantile function approach described elsewhere. 
15 Hermite functions are Hermite polynomials times the sqrt of the exponential weighting function.  There are several other 

good prospects. 
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 All of this would be impossibly complex for mere mortals to deal with were it not for Symbolic 

Algebra Manipulation (SAM) systems – we use Maple.  Often the Maple expressions are over 10,000 

symbols and operators.(!) 

 

The Maple programs generate many sub-models with varying structure of the Stream Function, 

varying number of Hermite Functions, varying complexity of the y-coefficients, etc.  Often there are 

some 200-300 individual numerical parameters to optimize.  The Maple program then emits CPP state-

ments to be incorporated into a minimization program which can run for days and weeks. 

 

 The CPP program computes a norm for the Error Residual.  Currently this is the square of the 

error residual integrated over all space and time, and normalized by a measure of the turbulent velocity 

intensity.  This gives a scalar norm to be minimized against all free parameters. 

 

 The minimization algorithms are simple Conjugate-Gradient and Powell algorithms, repeated ad 

nausea till a minimum is reached.  This is done for a range of 161 Reynolds Numbers16 from 1000 to 

10,000,000.  Some models give excellent results compared to physical experiment and DNS. 

 

 

5.3.  Some Computation Results 

 I have explored many configurations of my GERM formulation.  Many have resulted in poor 

and unphysical results.  Some have yielded very satisfactory results over a wide range of Re.  Here I 

discuss one of the best results. 

 

 Of course, I might be accused of “cherry-picking” with one eye cocked toward the answer!  To 

this I quickly confess.  So, I do not claim this is a solution but only that the results are very suggestive. 

 

Some details: 
 

1. The G0[..] equations are satisfied by direct integration for U1(y). 
 

2. The G1[..] stream function is [S1,0,S3] which we dub the MS0S case. 

a. Hermite function expansion on {x,t,z} is {4,4,2} terms respectively. 

b. y-expansion is {1,y
2
} in center channel and  exp c Re y  at the walls. 

 

3. The G2[..] stream function is also [S1,0,S3]. 

a. Hermite function expansion on {x,t,z} is {2,2,2} terms respectively. 

b. y-expansion is same as G1[..] term. 
 

4. The Galerkin style error residual is truncated to the G1[..] and G2[..] terms. 

a. Further truncation is to the Hermite functions in the beginning expansion. 

b. No truncation of the y-terms 
 

5. The scalar norm is the Navier-Stokes residual squared and integrated over {x,t,z,y}, then normal-

ized by the magnitude of the Reynolds Stresses, i.e. E(uxuy). 
 

6. This scalar norm is then minimized by variation of all 168 free parameters. 

 

                                                 
16 We use Bulk Velocity and Half-Channel width in Re=LV/. 
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 The minimization procedure is carried out for 161 Re numbers from 1000 to 10,000,000 with 

very interesting results.  Two screenshots illustrate the results:  The first screenshot below shows the 

mean values for our Re=42360 (Rhd=4*42360=169440) along with the Mean velocity of the UT DNS17 

for their Re=43478 (Re_tau=1995).  Also shown are the Reynolds stresses and the mean-square of the 

streamwise random velocity.  The form of the curves seems quite good, but there is the expected “ring-

ing” at the walls. 

 

 
  

                                                 
17 Lee and Moser, Direct numerical simulation of turbulent channel flow up to Re_tau = 5200, 2015, Journal of Fluid Mechanics, vol. 774, 

pp. 395-415 
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 Another interesting screenshot shows the result of plotting the Colebrook formula, i.e 1/sqrt(fhd) 

against log10(Rhd*sqrt(fhd)) which should empirically be a straight line. 

 

 
 

The pips on our “GERM” curve are just markers:  the “down” pips are at 1,2,4,8,10 leading digits of Re.  

The “up” pips are Re={20000, 42360, 126000} of the UT study. 

 

 The results are far from perfect, but – to me at least – they are certainly suggestive. 

 

 

6.  The Quantile Process and GaussXF Transform 

6.1.  Quantile Functions 

 Consider a velocity component u(t;) in a PPF channel at a certain point (say x
k
) and in a cer-

tain direction (say 
i
) so that: 

 

 i i ku(t; ) u (x , t; )     (6.1.1) 
 

This random function has a cdfu(..) (cumulative distribution function for u) which is: 
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u{u(t; ) } cdf ( )    stationary, i.e. not-dependent on t    Pr  (6.1.2) 

 

The range of cdfu(..) is [0,1] and the domain is [-inf,+inf].  Moreover, for physical situations, cdfu(..) is 

smooth and strictly increasing and has as many derivatives as we need. 

 

 Now construct a new random function as: 
 

 
uq(t; ) cdf (u(t; ))    (6.1.3) 

 

What is the cdf of q? 
 

 

u

u u u u

q( t; )

{u(t; ) } cdf ( ) Standard Definition

{cdf (u(t; )) cdf ( )} cdf ( ) Because cdf ( ) is monotone

{q(t; ) } !!! The Uniform Distribution

   

    

     

    

Pr

Pr

Pr

 (6.1.4) 

 

 Now the Standard Normal cdfN(..) and its inverse (quantile function) are18:  
 

 

 1 1

1
( ) 1 erf The "Normal" Distribution

2 2

( ) 2erf 2 1 The "Normal" Quantile Function 

  
     

  

   

 (6.1.5) 

 

Then, construct another random function as: 
 

    1 1

u(t; ) q(t; ) cdf (u(t; ))        
 

The resulting (t;) is a Normal Gaussian Random Variable with Mean=0 and Variance=1!  It is also 

stationary and ergodic on “t” because u(t;) and q(t;) are so.  Moreover, the Wiener Integral: 
 

 s(t; ) (t s)dr (s; )       (6.1.6) 
 

over infinite limits is also Gaussian and can represent any stationary Gaussian Random Function with 

the appropriate kernel (..).  Finally, every stationary, Gaussian random function with finite mean and 

variance is completely specified by its mean and auto-correlation function19, and any autocorrelation 

function can be generated with the appropriate kernel to the Wiener Integral. 

 

Summary:  We have demonstrated that there exist monotone functions such that: 
 

 

1

u2 u2 u

1

2u 2u

(t; ) M (u(t; )) M ( ) (cdf ( ))

u(t; ) M ( (t; )) M ( ) cdf ( ( ))



 



 

      

      
 (6.1.7) 

 

So, we can represent u(t;) precisely by one Monotone Function Mf2u(..) and one Wiener Kernel F(..).  

This is a substantial savings over the infinite number of kernels for the OPF Polynomial Functionals. 

 

Authors Note:  I call this the “Gaussian Transform” or GaussXF or GXF.  I have not developed the 

Maple and CPP code to use with a Galerkin-Optimization algorithm, but it seems to be very promising. 

 

 

                                                 
18 The Wikipedia article “Normal Distribution is quite good. 
19 See Yaglom “Stationary Random Functions”, especially section 1.3. 
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6.2.  Application of Quantile Functions to Turbulent Flows 

 For turbulent PPF, we require a velocity u
i
(x,y,z,t;) representation which: 

 

1. Extends beyond Gaussian Distributed Random Functions 

2. Extends to all four space-time parameters 

3. Extends to Multiple Degrees of Freedom 

 

The GaussXF process inherently extends beyond simple Gaussian Random Functions.  Furthermore, the 

extension to multiple parameters described in section 4.2 above translates over directly.  Extension to 

Multiple Degrees of Freedom is more complicated, but can be readily done. 

 

 For simplicity, consider two components20 of u
i
(x,y,z,t;) at a fixed point in the channel x

k
 say 

u
x
(t;) and u

y
(t;).  As above, we may write: 

 

 
x

y

x x

2u

y y

2u

u (t; ) M ( (t; ))

u (t; ) M ( (t; )





   

   
 (6.2.1) 

 

Here, the two Mxxx(..)’s are different functions, and the two (..)’s are Gaussian but NOT necessarily 

independent of each other.  We may write the two (..)’s as: 
 

  i i(t, ) (t s) dr (s, ) 1,2         (6.2.2) 

 

So, much like above, we can represent u(t;) precisely by two Monotone Functions Mf2ui(..) and one 

four-component Wiener Kernel Array 
i

(..).  This is a substantial savings over the infinite number of 

kernels for the OPF Polynomial Functionals 

 

 This is a very promising avenue of approach. 

  

                                                 
20 The third velocity u

z
(t;) is specified by the mass-conservation equation. 
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